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A theoretical approach to calculate shapes of phospholipid vesicles is developed. It is general in the
sense that it is not restricted to shapes with special symmetry properties, and it includes a stability
analysis of the shapes. In keeping with recent experimental findings, the description of the vesicle mem-
brane is based on the generalized bilayer-couple model. According to this concept, the bilayer structure
of the membrane is modeled by representing its two monolayers as closed neutral surfaces with a con-
stant separation distance. Equilibrium shapes are assumed to correspond to the minimum of the mem-
brane elastic energy at constant values of the membrane area and the vesicle volume. The elastic energy
is composed of the local and nonlocal bending energies of the membrane. The latter term represents the
energy contribution of the relative area changes of monolayers. The variational problem to calculate
equilibrium shapes is solved by applying a Ritz method based on an expansion in spherical harmonics.
The numerical computations concentrate on the range of model parameters for which nonaxisymmetric
shapes are obtained. In addition, axisymmetric shapes which are obtained in the same range of model
parameters are examined. It is shown that small differences of the ratio between the nonlocal and local
bending moduli (g) may cause significant changes in the nature of shape transformations. For high ¢
values, nonaxisymmetric shapes are stable, and they represent the intermediate states in the continuous
transformation between oblate and prolate axisymmetric shapes. At low g values characteristic for phos-
pholipid bilayers, the nonaxisymmetric shapes are unstable. In this case, the transition between oblate
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and prolate axisymmetric shapes is discontinuous.

PACS number(s): 87.22.Bt, 62.20.Dc, 02.60. —x

I. INTRODUCTION

Phospholipid vesicles are closed bilayer lipid mem-
branes which form spontaneously in aqueous solutions.
Their equilibrium shapes’ shape transformations and fluc-
tuations have been a subject of increasing interest in ex-
perimental biophysics as well as in theoretical physics
[1-4]. The relatively simple vesicle structure enables a
detailed experimental investigation of the mechanical
properties of membranes and therefore also of related
mechanisms taking place in more complex systems such
as erythrocytes and other living cells. Several mathemat-
ical models have been developed in order to describe the
vesicle features theoretically. In some cases, good agree-
ment between experiment and theory has been found so
that at least some of the basic mechanisms of shape trans-
formations have been illuminated by theoretical studies
[5-14].

The generally accepted basis for the calculation of
shapes of phospholipid vesicles is the assumption that
equilibrium shapes correspond to the minimum of the
membrane elastic energy. The phospholipid bilayer is
more or less unstretchable and water impermeable. Ac-
cordingly, the constraints of constant vesicle volume and
membrane area are usually also part of the basic model
assumptions. Two alternative models of vesicle shapes
have been proposed and studied: (i) the spontaneous-
curvature concept [5-7,9,14], relating shape changes to
variations of the spontaneous curvature of the bilayer,
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and (ii) the bilayer-couple model [10-14], which is based
on the bilayer-couple hypothesis [15]. In both models,
the only energy contribution taken into consideration is
the membrane bending energy.

The bilayer-couple model accounts for the structure of
phospholipid membranes by considering the two leaflets
of the bilayer separately. While remaining in close con-
tact, both monolayers are assumed to respond to mechan-
ical stresses independently, i.e., they can freely slide over
each other in a lateral direction. In general, previous
studies of this model have required that both monolayers
have constant areas or, more conveniently, that the
difference of monolayer areas A A be fixed. This model,
which includes a “hard” constraint of constant A 4, will
be called in the following the “‘strict” bilayer-couple mod-
el. It enables a suitable classification of equilibrium
shapes. A given class comprises all shapes of the same
symmetry that are continuously transformed into each
other by varying the model parameters, i.e., the relative
vesicle volume v and the relative area difference of mono-
layers Aa [11,16]. Both parameters are normalized with
respect to a sphere that has the same surface area as the
vesicle. A systematic study of the strict bilayer-couple
model revealed that the v-Aa phase diagram comprising
axisymmetric shapes of lowest bending energies contains
a gap between oblate and prolate shapes [14]. By analyz-
ing nearly spherical vesicles with relative volumes v close
to 1, stable nonaxisymmetric shapes have been shown by
an approximate method to fill this gap [17]. These
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nonaxisymmetric shapes are the intermediate states in the
continuous transformation between oblate and prolate
axisymmetric shapes.

A more general description of the bilayer structure
takes into account that the two monolayers can undergo
relative area changes at constant area of the neutral sur-
face of the bilayer [8,18—20]. That means that, in con-
trast to the strict bilayer-couple model, A 4 may differ
from the corresponding A A, defined for the unstressed
monolayers. The energy contribution that results from
this relative monolayer stretching (nonlocal bending ener-
gy) is comparable to the (local) bending energy of the
membrane [21]. Accordingly, a proper description of the
real vesicle structure is based on both energy contribu-
tions [8,22-24]. The theoretical concept that includes
the nonlocal bending energy instead of the hard con-
straint of constant A A is called here the generalized
bilayer-couple model. This model involves both the
spontaneous-curvature as well as the strict bilayer-couple
models as limiting cases. It has been shown that this gen-
eral model provides an appropriate basis for the descrip-
tion of membrane tether experiments [21,22] as well as
for the interpretation of the budding phenomenon of
phospholipid vesicles [2,23-25]. A study of the transfor-
mation between prolate shapes and pear shapes on the
basis of this model revealed that the nature of transitions
between shapes of different classes is strongly influenced
by the relative contribution of the nonlocal bending ener-
gy to the elastic energy of the bilayer membrane [26].

Most of the previous work on vesicle shapes has been
based on mathematical methods which are restricted to
axisymmetric shapes, and instead of a complete stability
analysis, the shapes with the lowest membrane elastic en-
ergies were assumed to be stable. Such approaches leave
open the questions (i) whether there are locally stable
shapes of higher elastic energies, (ii) whether the axisym-
metric shapes found are stable with respect to non-
axisymmetric deformations, and (iii) what the nonaxisym-
metric shapes look like. As mentioned above, until now
these questions have been answered only within the strict
bilayer-couple model on the basis of an approximate
method valid only for nearly spherical shapes [17].

The present paper is mainly aimed to provide a de-
tailed study of that region of the phase diagram where
oblate and prolate axisymmetric shapes transform into
each other through nonaxisymmetric shapes. This study
is based on the generalized bilayer-couple model. The
calculations also include shapes of vesicles with low rela-
tive volumes. Furthermore, the stability of stationary
shapes is analyzed. Particular emphasis is given to the
character of the transition of oblate and prolate axisym-
metric shapes into nonaxisymmetric shapes.

For this, a new variational method to calculate equilib-
rium shapes is developed. It is based on a Ritz procedure
(see, e.g., [27]) expressing the shape function as a series of
spherical harmonics. Keeping the values of the various
quantities subjected to constraints constant, the mem-
brane elastic energy is minimized with respect to ampli-
tudes of spherical harmonics. This approach is general in
the sense that it enables the calculation of both axisym-
metric and nonaxisymmetric shapes as well as the stabili-
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ty analysis of stationary shapes with respect to all possi-
ble deformations. The stability analysis is based on the
values of second derivatives of the elastic energy with
respect to amplitudes of spherical harmonics. The only
limitation of the present method is that the shapes must
be representable by unique functions of the spherical an-
gles.

This method is applied to shapes of simple phospholi-
pid vesicles, assuming that their bilayer membrane is
symmetric. In this case, the spontaneous curvatures of
the two monolayers have the same absolute value but op-
posite signs. Thus the effect of the intrinsic curvature of
the constituent lipids is negligible.

II. GENERALIZED BILAYER-COUPLE MODEL
BY SPHERICAL HARMONICS

Equilibrium shapes of phospholipid vesicles are as-
sumed to correspond to the minimum of the elastic ener-
gy of the closed bilayer membrane. The elastic energy is
taken as the sum of the membrane bending energy W,
and the energy of relative monolayer stretching W, (cf.
[8,24,26,28)):

W=W,+W,
2
1 2 1k
=Sk J(C+Crda+— i

AA _AAO
h

(1)

Here, k. and k, are the local and the nonlocal bending
moduli, respectively, and C,; and C, denote the two prin-
cipal curvatures. Integration is performed over the neu-
tral surface of the bilayer with the area 4,. The area
difference between the outer and the inner leaflets of the
phospholipid bilayer is denoted by A A. The correspond-
ing spontaneous difference A A, is defined for the un-
stretched monolayers. The separation distance between
the neutral surfaces of the two monolayers is denoted by
h. The instantaneous value of the area difference A A4 is
calculated as follows:

AA=h [(C,+Cy)dA . 2)

For symmetric bilayers, which are considered here, k, is
related to the area expansivity modulus of the membrane
k, by the equation

k,=h>— . (3)

The minimization of the elastic energy [Eq. (1)] is per-
formed at constant values of the membrane area 4 and
the vesicle volume V. For given values of these quantities
A, and V,, respectively, the equilibrium shapes have to
fulfill the constraints

A= [da=4,, (4)
v=[dv=v,. (5)

A normalization of the elastic energy and the two con-
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straints with respect to a sphere that has the surface area
A, and the radius R, =(A4,/47)'/?, and whose mono-
layers are unstretched, yields dimensionless model quan-
tities w, w,, w,, Aa, a, and v, respectively. Due to this
normalization, the elastic energy w is measured in units
of the bending energy of the sphere (87k,). A dimen-
sionless shape function r =r (4, ¢) is obtained by normal-
izing the original shape function with respect to R;. Ac-
cordingly, the vesicle shape is described in terms of the
distance r between the origin of the coordinate system
and the closed surface of the vesicle using the spherical
angles ¥ and @ as independent coordinates. It is required
that » be a unique function of ¢ and @. By the use of
r (3, ), the elastic energy is expressed as

w=w, t+w,

2r —Ar+

FIVF P+ LVEV([Vr ) ‘2

" 16r r2+[vr)?
dQ

X‘:+ (Aa—Aa )2, (6)

rVr2+[vr]? 9 0

where

1 r[VrPP+1vr-v([Vr]?)

Aa=— 2r+ 3 da  (7)
8 r2+[Vr]

and Aa is defined as Aay,=A A4,/87hR;. The two con-
straints become

=1 IV RPdQ=a.=
a= [V +[vrifda=a,=1, (8)
1 370 =
v:EfrdQ—uo. )
Integration is performed over the full solid angle

dQ=sindddde. The differential operators V and A, re-
spectively, are applied to r as follows:

Vr=

L ] ) (10)

Fgy——F
¥ sind ' ?

cost 1

——Ftst+t——F_, , (11
sind "7 sin%9 #° )
where r, denotes the partial derivative of » with respect to
t. The parameter g introduced in Eq. (6) is the ratio be-

tween the nonlocal and local bending moduli:
=—. (12)

In this way, v, and Aa, are obtained as basic geometric
model parameters while g reflects the relative resistance
of the membrane to monolayer stretching with regard to
its resistance to bending.

In order to obtain extrema of Eq. (6), a Ritz procedure
using spherical harmonics is applied. Accordingly,
r(d,p) is expressed as a series of spherical harmonics
Y, (3, 9):

w 1
r(te)=3 I u,,Y,.(3e). (13)
1=0 m=—1
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The functions Y, (J,¢) are defined by the associated
Legendre polynomials P,,, (cosd) as
172
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Ylm(6’¢):

Since r(43,¢) is a real function,
u,’_m:(—l)mu,’;‘n . (15)

The Ritz procedure used here requires the origin of the
coordinate system to be fixed in an appropriate way.
This yields six additional constraints for the calculation
of equilibrium shapes. The necessity for the inclusion of
such constraints, the present choice for the position of
the coordinate system, and the resulting expressions are
given in the Appendix.

Finally, for the calculation of equilibrium shapes the
function

g=wtA(a —1)+A, (v —vo)+A,x,, +A,p, +1,z,
+k,1t1+k,2t2+k,3t3 (16)

must be minimized. It contains the membrane elastic en-
ergy and includes all eight constraints via Lagrange mul-
tipliers (A). In the numerical computations, w, a, v, x,,,
Ym> Zm> L1, ty, and t; are replaced by their definitions
given above and in the Appendix. Since only a finite
number of spherical harmonics can be used, the expan-
sion (13) has to be cut at an appropriately chosen maxi-
mal / value [ ..

A necessary condition to obtain equilibrium states is
that the partial derivatives of g with respect to all ampli-
tudes of spherical harmonics as well as to Lagrange mul-
tipliers vanish. Let us call a shape for which this condi-
tion is fulfilled a stationary shape. Accordingly, a sta-
tionary state is a solution of the system of nonlinear equa-
tions formed by the first derivatives of g. This equation
system is solved numerically by the use of Newton’s
method where the values of integrals in Egs. (6)-(9) and
(A1)-(A3) (see the Appendix) as well as of integrals of the
corresponding derivatives are obtained by a two-
dimensional Simpson integration.

In order to decide whether a stationary shape obtained
in this way minimizes the elastic energy, one has to per-
form a stability analysis of the corresponding solution.
This is possible by using the same procedure as described
in [17]. This procedure takes into account that the am-
plitudes of spherical harmonics are interrelated due to
the presence of constraints. Its basic idea is to take some
amplitudes to depend on the others and to inspect the ei-
genvalues of the matrix of second derivatives of the bend-
ing energy with respect to independent amplitudes. If
these eigenvalues are all positive, the corresponding solu-
tion is stable, i.e., the stationary state characterizes a
shape of minimum membrane elastic energy.

It should be noted that, strictly speaking, the present
method to calculate stationary shapes as well as the sta-
bility analysis are valid only within the frame of the finite
number of spherical harmonics used. However, if [, is
so large that its further increase would not change the re-
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sults significantly, and if the number of integration inter-
vals in the Simpson procedure is also correspondingly
high, the present mathematical method will be
sufficiently general and accurate.

III. NONAXISYMMETRIC SHAPES IN THE
STRICT BILAYER-COUPLE MODEL (g — «)

Let us first inspect the results of the calculations of
equilibrium shapes for ¢— oo. This case is called the
strict bilayer-couple model. It is identical with the as-
sumption that not only the bilayer as a whole, but also
both monolayers, have constant areas. In this special
case of the present model, the nonlocal bending energy w,
vanishes. Instead of the corresponding energy contribu-
tion, a “hard” constraint requiring Aa =Aa has to be in-
cluded into the calculations. This strict bilayer-couple
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model has been extensively investigated [10—14,16], and
for nearly spherical vesicles it has been used also for the
calculation of nonaxisymmetric shapes [17]. It is in-
teresting therefore to compare the previous results on
nonaxisymmetric shapes obtained by a less accurate ap-
proach with the results of the method presented here, and
additionally, to consider shapes that are not nearly spher-
ical. On the other hand, the accuracy of the present
method, which is still approximate, can be estimated for
axisymmetric shapes by comparing the results with those
of an Euler-Lagrange procedure (cf., e.g., [11,13,14]).
The latter method is an exact method but has been ap-
plied only to axisymmetric shapes until now.

In the following, the computations are performed at
the relative volumes v,=0.95, v,=0.85, and v,=0.7.
For the shape calculations at vy, =0.95 and vy =0.85, the
expansion of the shape function in spherical harmonics

(b)

pad
123 | I 1 1 1 M2 $F ) 1
1.01 102 103 104 105 106 107 108 109 110

ACIO

100 1.05 1.10

FIG. 1. Relative bending energies w, of stationary shapes as functions of relative differences Aa, of monolayer areas for g— o at
the relative volumes (a) vy =0.95, (b) v,=0.85, and (c) vy=0.7. Dashed lines mark unstable shapes. S,,S,: symmetry-breaking
points where axisymmetric oblate shapes and axisymmetric prolate shapes, respectively, transform into nonaxisymmetric shapes.
M ,M,: minimum points of the curves belonging to the two classes of axisymmetric shapes. M: intermediate points of the nonax-
isymmetric shape class. Shapes corresponding to the points given in parentheses are included. The axisymmetric shapes belonging to
M, and M, are marked by including their symmetry axes as vertical lines. The nonaxisymmetric shapes (M) are represented by three
cuts containing the reflection planes where every reflection plane contains a pair of axes of the Cartesian coordinate system.
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[Eq. (13)] is cut at [ ,,=10. At v,=0.7, the value
lax =22 is used. For the shapes studied in the present
paper, these [, values provide a sufficiently high accu-
racy of the Ritz method (see below). For even lower
volumes, the application of the present method meets
with difficulties since the corresponding shapes cannot be
represented by unique functions of the spherical angles.

Figures 1(a)—1(c) present the results of the calculations
of nonaxisymmetric shapes as well as of those axisym-
metric shapes which are obtained in the same ranges of
the model parameters. The relative bending energy of
stationary shapes is shown for the three relative volumes
as a function of Aa,. Here, and also in the following,
only those axisymmetric shapes are included that can be
directly transformed into nonaxisymmetric shapes
through the symmetry-breaking points S; and S, by
changing Aa,. The two axisymmetric shape classes
comprise shapes that are mirror symmetric with respect
to their equatorial planes. These shapes are oblate at low
Aa, values and prolate at high Aa, values. The points
M, and M, designate the minima of the bending energy
w, with respect to Aa, for each of the two classes. The
contours of the shapes corresponding to these points are
shown in Figs. 1(a)-1(c).

All nonaxisymmetric shapes obtained by the present
method at the chosen relative volumes are characterized
by three orthogonal reflection planes. Accordingly, they
can be visualized by the contours of those three cuts that
contain the symmetry planes. One example is shown for
every relative volume in Figs. 1(a)—1(c). Neighboring
shapes of different classes transform smoothly into each
other through the symmetry-breaking points S; and S,.
Therefore the nonaxisymmetric shapes provide a continu-
ous pathway from oblate to prolate axisymmetric shapes
at increasing Aa,. Example shapes obtained during such
a transformation are shown for vy =0.7 in Fig. 2, where a
nonaxisymmetric shape (b) represents an intermediate
state between a discocyte (a) and a dumbbell (c,d). In or-
der to illustrate how shape (b) transforms into the
dumbbell (d), this dumbbell is shown also in that orienta-
tion in which it is obtained from shape (b) by a continu-
ous increase of Aa.

The stability analysis has been performed at v,=0.95
and v,=0.85. The shapes corresponding to the dashed-
line branches in Figs. 1(a) and 1(b) have been found to be
unstable. (These shapes are characterized by saddle
points in the energy ‘“‘surface.”) Because of the full analo-
gy of the results of calculations of stationary shapes at
different relative volumes it is assumed that the stability
behavior is the same for v;=0.7 as for the two higher
volumes. The corresponding curves of unstable shapes in
Fig.1(c) are also drawn as dashed lines. The locally stable
shapes denoted by solid lines have the lowest bending en-
ergies at given Aa, values, i.e., they are also globally
stable.

In order to estimate the accuracy of the present Ritz
method, the bending energies of axisymmetric shapes be-
longing to the points M, and M, were recalculated using
various /.. values. The results were compared with cor-
responding results of the Euler-Lagrange procedure men-
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(c)

(d)

FIG. 2. Examples of stationary vesicle shapes obtained at
vo=0.7. Shapes (a), (c), and (d) are axisymmetric, where (c) and
(d) represent the same dumbbell shape in different orientations
with respect to the fixed reference frame. The two shapes (a)
and (c,d) belong to the points M; and M,, respectively [see Fig.
1(c)]. Shape (b) is a nonaxisymmetric intermediate shape be-
tween (a) and (c) corresponding to point M in Fig. 1(c).
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€y

(M+)
(M2)

10 12 14 16 18 20 22 24 26 28 30

emax

FIG. 3. Relative differences €, between the bending energies
w, (1., ) calculated by the present method and the correspond-
ing values wg; obtained by an Euler-Lagrange procedure in
dependence on /,,: € =[w,(l ) —wgr ]/wgL. The values of
€, were obtained for v, =0.7 at the points M, and M,, respec-
tively [cf. Fig. 1(c)].

tioned above. Figure 3 shows the relative differences of
related bending energies obtained by the two methods at
vo=0.7 as functions of [ ,,. For [, =22, these relative
differences are smaller than 1073, Therefore this /,,,
value is used in the shape calculations at v, =0.7. The
accuracy of the Ritz method at M, and M, is even higher
at the relative volumes 0.85 and 0.95, where [,, =10 is
used. (The error is of the order 10™* for v,=0.85 and
smaller than 10~ % for v,=0.95.) Because the nonaxisym-
metric shapes are characterized by Aa, values between
those of M, and M,, it can be assumed that they are also
calculated with sufficiently high accuracy. Finally, it
should be noted that the present results obtained at
vo=0.95 confirm the previous approximate results [17].

IV. GENERALIZED BILAYER-COUPLE MODEL

A. General remarks

In the following, the effect of a finite value of g on the
calculations of vesicle shapes is studied. In this case, the
two monolayers are assumed to undergo relative area
stretching, i.e., Aa is in general different from Aa,. Then
an equilibrium shape is characterized by that Aa value
which minimizes the elastic energy w [Eq. (6)] at constant
values of the relative membrane area [a =1, Eq. (8)] and
the relative volume [v =v,, Eq. (9)]. Accordingly, at
equilibrium it is required that

g _
3Aa o, (17)

with g defined in Eq. (16). Thus the condition

Jw
dAa

eq

is obtained, which yields the useful relation
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ow,

3Aa eq=—2q(Aa——Aa0) . (18)

The left-hand side of Eq. (18) depends neither on g nor on
Aa,. Therefore it is the same for a given stationary shape
characterized by a certain Aa value at any value of gq.
The right-hand side of Eq. (18) determines for a given g
the Aa, value of this stationary shape, i.e., its location in
the phase diagram. Thus a shape that is stationary for
g — oo is also stationary at finite g, and the values of the
left-hand side of Eq. (18) obtained within the strict
bilayer-couple model can be taken as the basis for corre-
sponding calculations in the generalized bilayer-couple
model.

Furthermore, some information about the stability
properties of stationary shapes obtained for g — « can be
applied to the case of finite g values. A stationary shape
that is unstable for g— o is unstable with respect to
some shape changes that conserve Aa. For finite g also
shape changes that do not conserve Aa are allowed, but
the stationary shape remains unstable with respect to the
same Aa-conserving shape changes as for ¢ — . Thus
shapes that are unstable for g — o cannot be stable for
finite values of g. On the other hand, as will be shown in
the further discussion, the proof that a shape is stable at
g — o is not sufficient to conclude that it is also stable at
finite gq.

These properties are used to visualize [based on Eq.
(18)] the behavior of the system representing the general-
ized bilayer couple model in a general way (cf. [26]). Let
us consider both sides of Eq. (18) as functions of Aa.
Then, the stationary states fulfilling this equation are ob-
tained at the intersections of the graphs of these two
functions. The graphs of

awb
dAa

eq

as functions of Aa are depicted for the relative volumes
0.85 and 0.7 in Figs. 4(a) and 4(b), respectively. It is im-
portant to note that none of the lines shown are strictly
vertical, although some are very steep. (Points on the
solid line to the left and below S, and to the right and
above S,, correspond to axisymmetric shapes, and points
on the line between S; and S, correspond to nonaxisym-
metric shapes.) Dashed-line branches correspond to
those stationary shapes that were found to be unstable for
q — o (see Sec. III). The graphs of the right-hand side of
Eq. (18) as functions of Aa are straight lines. The slope of
such a straight line is given by —2q, and Aa, determines
the crossing of this line with the axis of the abscissa.
Thus the case g — o can be represented by vertical lines.
As will be discussed below, a characteristic value for
phospholipid bilayers is ¢ =3. Some examples of straight
lines obtained for ¢ =3 at different Aa, values are includ-
ed in Figs. 4(a) and 4(b) (dotted lines). The various cross-
ing points between the graphs of the two sides of Eq. (18)
as obtained from subsequent parallel shifts of a straight
line denote the possible transformations of a stationary
shape with respect to variations of Aay,.

The straight vertical lines corresponding to ¢ — o (not
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shown) move at increasing values of Aa,=Aa from the
left to the right in Figs. 4(a) and 4(b). All vertical lines
cross the stable branches of the graphs of

ow,
dAa

eq

only once. This is the expected result, which shows that
for g— the transition between oblate and prolate
axisymmetric shapes through nonaxisymmetric shapes is
continuous.

(a)
-0.4 | |

.. -0.85
-0.5 | e Yo
eq

§|2
oo

-0.6
-0.7
-0.8
-0.9 -

-1.0
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] 1 ] 1 1 ] 1 L
101 102 103 104 105 106 107 108 109 110
Aa

-13

(b)

0.5 -
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aACl qu
0.0 F
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-15 1 1 | 1
1.00 1.05 1.0 1.15 1.20 1.25 1.30
Aa

FIG. 4. Graphical solution of Eq. (18). The Aa dependencies
of dw, /0Aa at equilibrium are shown for the relative volumes
(a) vo=0.85 and (b) v,=0.7. These dependencies, which are the
same for any value of ¢, were calculated within the strict
bilayer-couple model. Note that some lines are very steep but
not vertical. The results of the stability analysis at g— o are
included by drawing the lines belonging to stable shapes solid
and those corresponding to unstable shapes dashed. Examples
of straight lines representing graphs of the right-hand side of
Eq. (18) for g =3 are included (dotted lines). They are marked
by roman numbers and their order corresponds to increasing
values of Aa,. In (b) the corresponding Aa, values are given at
the crossings of lines (I)-(IV) with the axis of the abscissa.
Crossings of solid and dotted lines are marked by points (see
text). For other notations see Fig. 1.
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B. Finite values of g

A characteristic value for phospholipid bilayers is
g =3. For example, the ratio between the nonlocal and
local bending moduli can be obtained from the values
k,=1.2X10"" J and k,=4.1X10" " J [21]. For these
values ¢ =3.4. Another estimation can be made by using
Eq. (3) and taking the area expansivity modulus of the bi-
layer as k,=0.2 Tm™? [29]. The distance & between the
two monolayers is measured between their neutral sur-
faces. Accordingly, it is approximately half of the mem-
brane thickness. Assuming # =2.7X107° m, Eq. (3)
yields k,=3.65X 101 J, which also gives g ~3. In the
following part of this section, the generalized bilayer-
couple model is first studied for ¢ =3. Subsequently, the
results are generalized for arbitrary values of g.

For q =3, the behavior of the system differs
significantly from the results of the strict bilayer-couple
model. It is also different for different relative volumes.
Let us inspect the various stationary states obtained at
the intersections of dotted and solid lines in Fig. 4(a)
(vy=0.85) and 4() (vy=0.7). Corresponding to
different ranges of Aa, values, three different situations
can be distinguished in the appearance of stationary
shapes:

(i) There is only one stationary shape at the given Aay,.
In this case, the straight dotted line crosses the stables
branches of the graphs of the left-hand side of Eq. (18)
only once. The stationary states designated by such sin-
gle intersections correspond to stable oblate shapes [lines
(I) in both Figs. 4(a) and 4(b)] or to stable prolate shapes
[line (III) in Fig. 4(a) and line (IV) in Fig. 4(b)].

(ii) There are three crossings between a straight dotted
line and the various solid lines, and the solid line connect-
ing S; and S, and characterizing nonaxisymmetric
shapes is crossed only once [lines (II) in both Figs. 4(a)
and 4(b)]. In this case the outer two crossing points be-
long to axisymmetric shapes and denote locally stable sta-
tionary states whereas the intermediate intersection
marks an unstable nonaxisymmetric shape. The elastic
energy of the latter shape has a maximum with respect to
varying Aa values at constant Aa,.

(iii) The dotted line crosses the solid lines again three
times, but now two of the crossing points belong to
nonaxisymmetric shapes [line (III) in Fig. 4(b)]. Again,
the intermediate crossing point denotes an unstable sta-
tionary state while the outer two crossings characterize
locally stable shapes.

In this way, for ¢ =3 all nonaxisymmetric shapes at
v,=0.85 are found to be unstable [cf. Fig. 4(a)]. At
vy =0.7 there are, depending on the value of Aa,, either
only unstable or coexisting unstable and locally stable
stationary nonaxisymmetric shapes [cf. Fig. 4(b)]. In or-
der to establish the globally stable shapes as well as the
possible shape transformations at variations of Aa, the
elastic energies of different stationary states have to be
compared. These elastic energies (for ¢ =3) are shown as
functions of Aa, in Fig. 5 (vy=0.85) and Fig. 6 (v,=0.7).
The critical regions of the two figures contain the
symmetry-breaking points S; and S,. These regions are
enclosed in boxes in part (a) of each figure and enlarged
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in Figs. 5(b) and 6(b). Dashed lines again denote unstable,
i.e., nonexisting, shapes. As mentioned above, at a given
Aa, between S| and S, there are three stationary states,
two corresponding to locally stable shapes (solid lines)
and one corresponding to an unstable shape (dashed line).
The shape that belongs to the solid line with the lowest
elastic energy is globally stable. It is seen that the locally
stable nonaxisymmetric shapes at v, =0.7 are metastable,
i.e., they also do not exist. The vertically measured dis-
tance between the dashed line and the closest solid line
denotes in both Figs. 5 and 6 the height of the energy
barrier that has to be overcome during a transformation
of shapes of the two locally stable classes into each other
at a given Aa,. This energy barrier is largest at the point
P, where oblate and prolate shapes have the same ener-
gy. At this point, its value is in both cases smaller than
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FIG. 5. Relative elastic energies w of stationary shapes as
functions of Aa, for g =3 at the relative volume v,=0.85. (b)
enlarges the region marked by the frame in (a). Dashed lines
denote unstable shapes. P;: point of the discontinuous transi-
tion between oblate and prolate shapes. For other notations see
Fig. 1.
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10k T. Accordingly, for every Aa, value the vesicle will
quickly assume the shape of the lowest elastic energy.
Thus the transition of oblate and prolate axisymmetric
shapes into each other at variations of Aa, is direct and
discontinuous and is expected at that Aa, value where
the shapes of both classes have the same energy (point
Py).

The analogous calculations were also performed at
vy =0.95. The corresponding results are qualitatively the
same as at v, =0.85 and are not shown separately.

It has been shown in this way that there are no globally
stable nonaxisymmetric shapes for v;=0.7 and g =3.
However, it is worthwhile to note that the experimentally
measured g values are spread over a broad range. More-
over, they depend on the composition of the bilayer. It is
of interest therefore to study the generalized bilayer-
couple model for a broader range of g values. It can be
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FIG. 6. The analogous graphs as shown in Fig. 5 are present-
ed for the relative volume vy =0.7 (¢ =3). Pg: point where the
stable branch and the unstable branch of the w(Aa,) depen-
dence of stationary nonaxisymmetric shapes merge. For other
notations see Fig. 5.
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seen from Figs. 4(a) and 4(b) that the system exhibits a
high sensitivity with respect to variations of g, i.e., to
variations of the slope of the straight lines corresponding
to the right-hand side of Eq. (18).

The influence of ¢ on the calculations of vesicle shapes
is studied in more detail at the relative volume vy, =0.7.
The ranges of values of Aa, and g at which locally stable
shapes of different classes exist are mapped in ‘“‘phase-
diagram” form in Fig. 7. A vertical cut through this
phase diagram at ¢ =3 is given by Fig. 6, where the cor-
responding dependence of the elastic energy w on Aa, is
depicted. Another analogous cut that would be obtained
for g — o is represented by Fig. 1(c). The curves in Fig. 7
labeled s, s,, pg, and py correspond to the points so la-
beled (capital letters) in Fig. 6, for example. The crossing
points of different lines are denoted by T';, T,, T;, and
T,.

Let us first consider the globally stable shapes of the
three different classes. The regions in which these shapes
exist in the g-Aa, phase diagram (Fig. 7) are delineated
by solid lines. The transitions between globally stable
shapes of different classes for changing Aa, are continu-
ous as long as the solid lines are symmetry-breaking lines
(s, or s,). Thus globally stable nonaxisymmetric shapes
and globally stable oblate shapes transform into each oth-
er continuously through the s, line at g values that are
greater than the g value of T,. The corresponding transi-
tion between nonaxisymmetric shapes and prolate shapes
(s, line) is continuous only for g values greater than g cor-
responding to T,. At these g values, the symmetry-
breaking lines s; and s, divide the phase diagram into
three regions where all locally stable shapes are also glo-
bally stable. This situation is qualitatively the same as in
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FIG. 7. Phase diagram presenting the Aa, regions of locally
stable shapes in dependence on g at vo=0.7. s,,5,,ps,P7: sepa-
ration lines of different regions of locally stable shapes. The no-
tation of these lines (lowercase letters) corresponds to the nota-
tion of points [uppercase letters, see Figs. 1(c) and 6], which
generate these lines at variations of ¢g. Solid lines separate the
three regions of globally stable shapes. Dashed lines subdivide
these regions by marking the regions of metastable shapes
(identified in parentheses). T,,T,,T3,T4: crossing points of
different separation lines.
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TABLE I. The coordinates of characteristic points in the g-
Aa, phase diagram of locally stable shapes are listed for
different relative volumes. T, T, T3, and T, correspond to the
crossings of various separation lines in this phase diagram and
are defined in Fig. 7.

vo=0.7 vo=0.85 vo=0.95
q Aa, q Aa, q Aa,
T, 1.810 1.136 4.169 0.958 5.306 0.914
T, 3.118 1.096 4.700 0.966 5.368 0.915
T, 4.000 1.083 4988 0.969 5.449 0.917
T, 6.260 1.139 5.883 0.987 5.610 0.920

the strict bilayer-couple model [cf. Fig. l(c)]. For ¢q
values between those of T, and T,, the transition be-
tween globally stable nonaxisymmetric shapes and global-
ly stable prolate shapes is discontinuous and takes place
at the py line. At g values lower than g corresponding to
T,, all globally stable shapes are axisymmetric, and the
pr line denotes the discontinuous transition between ob-
late and prolate shapes (cf. Fig. 6). It is worthwhile to
note that the value g =3 is only slightly smaller than the
g value corresponding to T, (see also Table I). Accord-
ingly, a small increase of g with respect to g =3 is already
sufficient to obtain globally stable nonaxisymmetric
shapes at v,=0.7.

The dashed lines in Fig. 7 denote the regions of meta-
stable shapes, i.e., of locally stable shapes with higher
elastic energies than the coexisting globally stable shapes.
The classes containing the corresponding metastable
shapes are identified in parentheses. As mentioned
above, there is only a small energy barrier between coex-
isting metastable and globally stable shapes. Therefore
the metastable shapes are not expected to exist.

The values of g and Aa, belonging to the crossing
points T}, T, T3, and T, of different separation lines (cf.
Fig. 7) as well as the corresponding values obtained for
the related points at v,=0.85 and v,=0.95 are listed in
Table I. At increasing v, the analogous regions of locally
stable shapes become smaller in comparison with Fig. 7
(cf. Table I). The general behavior at the higher relative
volumes is qualitatively the same as for v, =0.7 with the
following exception. The sign of the ordinate of S, in the
graphs of Fig. 4 determines whether the s, line in Fig. 7
corresponds to positive or negative Aa, values for g —0.
In contrast to the situation shown in Fig. 7, this line will
be characterized by negative values of Ag, if the analo-
gous calculations are performed for g —0 at v, =0.85 [cf.
Fig. 4(a)] and v,=0.95. Accordingly, the subregion of
metastable oblate shapes within the region of globally
stable prolate shapes becomes much smaller at increasing
relative volumes.

V. DISCUSSION AND CONCLUSIONS

The mathematical method to calculate vesicle shapes
developed in this paper involves all shapes and their pos-
sible deformations which are representable by unique
functions of the spherical angles. By increasing the num-
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ber of spherical harmonics in the expansion of the shape
functions, a sufficiently high accuracy of the calculations
can be obtained for relative volumes not too small. This
method is particularly useful for the study of nonaxisym-
metric shapes which were only partly investigated until
now. It also represents the basis for a general approach
to simulate thermal fluctuations of vesicle shapes [30]. It
should be noted, however, that the range of relative
volumes considered here (v, = 0.7) cannot be extended to
lower values because the shapes of vesicles with corre-
spondingly small v, cannot be calculated by the present
Ritz method. Thus the behavior of the system at smaller
relative volumes may be different from the present results
and remains an open problem.

The nonaxisymmetric stationary shapes obtained by
the present numerical analysis involve three orthogonal
reflection planes. Within the strict bilayer-couple model
(g— ), all stationary nonaxisymmetric shapes are glo-
bally stable, and they represent the intermediate states in
the continuous transformation between oblate and pro-
late axisymmetric shapes. This is in agreement with pre-
vious findings [17].

Considering finite values of the ratio g between the
nonlocal and the local elastic bending moduli, it has been
shown that the behavior of the system, in particular the
stability of stationary shapes and the character of shape
transformations, are highly dependent on g. It is interest-
ing that the range of g values corresponding to a discon-
tinuous transition of oblate and prolate shapes into each
other coincides with the experimentally measured g
range. The present analysis shows that vesicles with rela-
tive volumes v, =0.7 will not assume nonaxisymmetric
shapes if ¢ =3, which is a characteristic value for phos-
pholipid bilayers. This is in agreement with the fact that
hitherto no observations of corresponding nonaxisym-
metric shapes of phospholipid vesicles have been report-
ed. It should be noted, however, that experimental re-
ports of nonaxisymmetric shapes that could be related to
the present work are in general lacking. On the other
hand, axisymmetric shapes such as discocytes or
dumbbells [cf. Figs. 2(a), 2(c), and 2(d)], which are stable
in the present analysis, have often been observed
[1-3,12]. Furthermore, it has been shown that vesicles
can undergo reversible oblate-prolate shape transforma-
tions [31]. A more detailed experimental study of such
transformations would be useful in order to illuminate
this topic and could also yield a rough estimation of the
parameter g. Possible experiments would require con-
trolled changes of the relative volume v, of the vesicle as
well as of the spontaneous area difference of monolayers
Aa,. The vesicle volume could be varied, e.g., by chang-
ing the osmolarity of the solution in which the vesicles
are suspended. Varying the temperature causes changes
of the membrane area of the vesicles, which is also
reflected in changes of the relative volume v,. Further-
more, in Refs. [2,12,31] the interpretation of the observed
shape transformations has been based on assuming
temperature-dependent variations of Aa,. In general, a
change of Aa, can be accomplished either by a change of
the spontaneous area per molecule in one monolayer with
respect to the other, or by varying the difference between
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the numbers of molecules of the two layers. This is possi-
ble by changing the chemical properties of the environ-
ment of a vesicle (see, e.g., [3]).

In any case, a large variability of the behavior of vesi-
cles in related experiments can be expected due to the
sensitivity of the system to small changes of g. At g
values greater than a certain critical value depending on
the relative volume, nonaxisymmetric shapes are stable
(cf. Fig. 7 and Table I). In general, the value of g will rise
if the number of bilayers forming a vesicle increases (cf.
[28]), and g is certainly different for bilayers with different
lipid compositions. Thus nonaxisymmetric shapes could
be important, for example, in the study of multilamellar
phospholipid vesicles as well as of closed bilayers com-
posed of different lipid mixtures. The observation of el-
lipsoidal nonaxisymmetric shapes similar to the one
shown in Fig. 2(b) has been reported for red blood cells
[32]. Although the erythrocyte membrane has a more
complex structure than pure phospholipid membranes,
the existence of these elliptocytes might be related to a
difference between the effective g values corresponding to
the membranes of these cells and of normal red blood
cells (axisymmetric discocytes).
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APPENDIX: FIXATION OF THE
COORDINATE SYSTEM

According to Eq. (13), a given shape is represented by a
set of amplitudes of spherical harmonics. However,
different positions of the coordinate system obtained by
translation and/or rotation yield different sets of ampli-
tudes for the same shape. If the series of spherical har-
monics were infinite, the elastic energy would be the same
for all such different sets of amplitudes, i.e., the system
would be degenerate. On the other hand, if a finite num-
ber of spherical harmonics is used, a change of the posi-
tion of the reference frame by translation or rotation will
slightly change the elastic energy. This artificial depen-
dence of the energy on the position of the coordinate sys-
tem is different for different shapes and also for different
numbers of spherical harmonics included. Therefore it is
necessary to fix the coordinate system in all computations
in a uniform way. This is done here by introducing the
following additional requirements (cf. [17]).

(i) The mass center of the vesicle is the origin of the
coordinate system.

(ii) The z axis (3=0) of the Cartesian coordinate sys-
tem points into one of those directions for which the dis-
tance between the vesicle surface and the origin of the
reference frame [ (9, ¢)] has an extremum.

(iii) The x axis (3=m/2, ¢=0) is chosen in such a way
that (7 /2,¢) has an extremum with respect to rotations
about the z axis.
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The first requirement yields three constraints for the
normalized coordinates x,, y,,, and z, of the mass
center of the vesicle:

__ 3 4
= =0

X T6mvg fr sind cosp d Q) , (A1)
_ 3 o B

= Tomoe [ #*sin®sinpd =0, (A2)
—_ 3 4 -
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The second and third requirements, respectively, yield
the conditions

ar(d, @)

39 (A4)

=0. (AS5)

Using Egs. (13)-(15), the condition (A4) is rewritten in
terms of amplitudes of spherical harmonics as

(A6)

where i is the imaginary unit and u;{ denotes the complex conjugate of u;;. Since Eq. (A6) must be valid for any value

of @, two constraints are obtained from condition (A4):

172
n=3 |2+ | wgrut=o A7)
=1
and
- |21+1 2
L= 2 II+D [ (uy—uy)=0. (A8)
=1 ™
Finally, condition (A5) yields the constraint
172
_a d 21+1 (I—m) .
t3_1§1m2=1m ar Udmy | Pm(O, —up)=0. (A9)
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FIG. 2. Examples of stationary vesicle shapes obtained at
v, =0.7. Shapes (a), (c), and (d) are axisymmetric, where (c) and
(d) represent the same dumbbell shape in different orientations
with respect to the fixed reference frame. The two shapes (a)
and (c,d) belong to the points M, and M,, respectively [see Fig.
1(c)]. Shape (b) is a nonaxisymmetric intermediate shape be-
tween (a) and (c) corresponding to point M in Fig. 1(c).



